NANOSCALE MOLECULAR DYNAMICS SIMULATION OF SHOCK COMPRESSION OF SILICON

I.I. Oleynik1, S.V. Zybin2, M. L. Elert3, and C. T. White4

1Department of Physics, University of South Florida, Tampa, FL 33620
2Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
3Chemistry Department, U. S. Naval Academy, Annapolis, MD 21402
4Naval Research Laboratory, Washington, DC 20375

Abstract. We report results of molecular dynamics simulation of shock wave propagation in silicon in [100], [110], and [111] directions obtained using a classical environment-dependent interatomic potential (EDIP). Several regimes of materials response are classified as a function of shock wave intensity using the calculated shock Hugoniot. Shock wave structure in [100] and [111] directions exhibit usual evolution as a function of piston velocity. At piston velocities $1.25 < v_p < 2.75$ km/s the shock wave consists of a fast elastic precursor followed by a slower plastic front. At larger piston velocities the single overdriven plastic wave propagates through the crystal causing amorphization of Si. However, the [110] shock wave exhibits an anomalous materials response at intermediate piston velocities around $v_p = 1.75$ km/s which is characterized by the absence of plastic deformations.

Keywords: Shock waves, molecular dynamics, silicon, interatomic potentials

PACS: 62.50.+p, 82.40.Fp, 81.30.Hd, 46.40.Cd

INTRODUCTION

Shock waves in solids provide a unique opportunity to study the fundamental physics and chemistry of matter at extreme pressures and temperatures. In spite of substantial theoretical and experimental efforts, a full understanding of shock-induced elastic and plastic responses and polymorphic phase transitions is still far from complete. These phenomena often occur at the nanometer size and picosecond time scales which makes molecular dynamics (MD) simulations an ideal tool for exploring nanoscale mechanisms of shock induced processes such as shock-induced plasticity, chemical reactions and phase transitions \[1,2\].

Recently we have performed MD simulations of shock wave propagation in diamond in [110] and [111] directions and discovered a rich variety of materials response \[3\]. As the shock wave intensity increased, four different regimes of shock wave propagation were observed: (i) pure elastic wave, (ii) shock wave splitting into elastic and plastic waves, (iii) anomalous elastic regime, and (iv) overdriven plastic wave with carbon activated chemistry. The anomalous elastic response is characterized by the absence of plastic deformations: the material remains uniaxially compressed in spite of the substantial amount of shear stresses present behind the shock wave front. However, shear stresses developed at smaller piston velocities were substantially relieved by developing plastic deformations in the crystal. The effective freezing of plastic deformations was related to non-monotonic behavior of shear stresses.
FIGURE 1. Silicon Hugoniot relationships between shock velocity and piston (particle) velocity for three crystallographic directions of shock wave propagation: [100], [110], [111] obtained from MD simulations.
1.25 < v_p < 2.75 km/s the [100] and [111] shock waves consist of an elastic precursor followed by a slower plastic deformation front. These two different states of compression correspond to two branches of shock Hugoniot, see Figure 1. Taking a sample of silicon, shock compressed at a particular value of piston velocity, one can examine its atomic structure. For example in the regime of elastic-plastic split-shock-wave one can clearly see the three states of the crystal: uncompressed in front of the shock wave front, elastically compressed behind the elastic shock wave front, and the part affected by plastic deformations taking place after the second plastic shock wave front. Figure 2 clearly shows these three states of the crystal in case of piston velocity v_p = 1.75 km/s.

At larger piston velocities, two branches of shock Hugoniot come together at the piston velocity v_p = 2.75 km/s. As is seen from Figure 3 that shows the atomic structure of [100] shock compressed silicon at v_p = 3.00 km/s, a single overdriven plastic (amorphization) wave propagates through the crystal. In the case of silicon samples oriented along [100] and [111] directions this critical piston velocity is v_p = 2.75 km/s. In contrast to [100] and [111] cases, the shock Hugoniot for a shock wave propagating in the [110] crystallographic direction clearly exhibits anomaly. At piston velocity 1.75 km/s, the elastic and plastic shock wave front coalesce into a single structure. It would be natural to assume that this piston velocity would produce a single, overdriven plastic wave as it was observed for the other, [100] and [111] directions. However, inspection of shock wave structure in Figure 4 reveals an absence of any plastic deformations, i.e. the crystal exhibits
“anomalous elastic” response in a sense that at smaller shock intensities, plastic deformations were present in the material.

Comparing to shock compression in diamond where an “anomalous elastic” wave was observed within a substantial interval of piston velocities for both [110] and [111] samples, the “anomalous elastic” wave in silicon appears only in the [110] sample and in a very narrow interval piston of velocities around $v_p = 1.75$ km/s. For the [100] and [111] directions, we did not find any cases of “anomalous elastic” response. This observation is related to the fact that diamond and silicon have different character of chemical bonding. The C-C bonds in diamond are very strong which results in relative stability of diamond phase and its resistance to chemical reactions and phase transformations at high pressures and temperatures. In contrast, silicon is relatively soft material that has several phase transitions occurring at relatively low pressures and room temperature. Therefore, the Si-Si bonds are easily broken and the pure “anomalous elastic” regime is difficult to sustain in a wide range of piston velocities.

The phenomenon of anomalous elastic response of the lattice upon strong shock compression has already been observed in several MD simulations including fcc rare gas solids [8], diamond [3], copper and aluminum [9]. All these materials exhibit non-monotonic shear-stress – uniaxial strain dependence. It is known that the shear stresses are the driving forces of plastic deformations in crystals. Therefore, the appearance of the ‘anomalous elastic’ regime in shock compressed material is directly related to non-monotonic shear stress behavior upon uniaxial compression. We are performing a detailed investigation of shock compressed silicon with the aim to elucidate this relationship and provide a simple physical explanation of the anomalous elastic materials response upon shock compression.

ACKNOWLEDGEMENTS

The work at USF is supported by NSF-NIRT (ECS-0404137) and ARO-MURI (W901 1NF-05-1-0266). Funding at Caltech was provided by ONR and ARO-MURI. CTW is supported by ONR directly and through Naval Research Laboratory.

REFERENCES